ஆமவடை

ஏற்கணவே பதிவு செய்த  இடத்தில் இருந்து தொடருவோம்:

ஆமவடை

படம் 1: ஆமவடை

Corollary 2 of  Theorem 3: ஒரே சொல்லில் எழுத்து இரடிக்கப்பட்டால் அந்த சொல் டோரசில் ஒரு சுழலுடன் [loop] கொண்டபடி அமையும்.

Lemma 2:  படுக்கவசமாகவும், நிமிர்ந்துவசமாகவும் அமைகப்பட்ட சொர்கள் மொழியில் இல்லாதவை.

Corollary 3 or Theorem 3: டோரசில் படுக்கவசமாகவும், நிமிர்ந்துவசமாகவும் பாதைகள்/எழுத்துக்கள் இல்லாதவை.

Theorem 4: ஒரு அகராதியில் உள்ள சொர்கள் அனைத்தையும் டோரசில் பிரதிபலித்தால் அந்த குறுக்கிடும் இடங்களின் [intersecting points] ஒன்று அல்லது மெர்பட்ட சொற்களை] எண்ணிக்கை அளவை மிக குறைவாக்கும் வண்ணம் அமைக்க முடியாது. அதாவது ஒரு அகராதியின் சொற்கள் அனைத்து எவ்வித அமைப்பில் உள்ள டோரசானாலும் சரி அதன் குறுக்கிடும் இடங்களின் எண்ணிக்கை மாராது. இது ஒரு மாறிலி [invariant].

Corollary 1 of Theorem 4: மேர்கண்ட டோரசில் [அதன் ஒரு பிரதிபலிப்பில் – ‘அ,ஆ,இ,ஈ, … ,ஒ,ஓ,ஔ‘ என்றும் ‘கசடதபரயரலவழள – ….’  என்றும் வரிசையிலோ, அல்லது வேறு பரிமாணங்களில்  அடுக்கியிருந்தால்] ஒவ்வொரு அகராதிக்கும் ஒரு சிரப்பான குறுக்கிடும் இடங்களின் எண்ணிக்கை கிடைக்கும். இந்த எண் அகராதியின் கையொப்பம் [signature] என்றும் சொல்லாம்.

Theorem 5: டோரசில் உள்ள ஓவ்வொரு அகராதி சொல்லும் ஒரு பாதை என்று கொள்ளலாம். சொல்லின் தொடக்க எழுத்து  பாதையின் தொடக்கத்தையும், சொல்லின் கடைசி எழுத்து பாதையின் முடிவையும் குறிக்கும்; பாதை திசைகொண்ட பாதையாக இருக்கும் – ஒரு அம்பு தொடக்கத்தில் இருந்து முடிவின் திசையில் வழி காட்டும். ஆகையால் அகராதியில் இல்லாத பாதைகள் பிழையாக எழுதப்பட்ட  அகராதி சொற்களுக்கு சமம், அல்லது அகராதியில் இல்லாத புதிய சொற்களுக்கு சமம்.

வாதம் [ஆதாரத்தின் தொடக்கமாக கருத்ப்படலாம்]:  டோரசில்ஒவ்வொரு சொல்லும் [அதன் பாதையும்] அகராதியில் உள்ள சொற்களாகவே இருக்கவேண்டும். Coding-theory / error correction codes theory படி இவ்வகை சரியான எழுத்துக்கள் உள்ள பாதைகள், சரியான சொற்களாகவும், தவான சொற்கள் [இல்லாத சொற்கள்] பிழையானவை என்வும் அமையும். இவ்வாரான சொற்கள் சரியானவையையின் சொற்பிழை எனவும் கருதப்பாடும்.

Corollary 1 of Theorem 5: மேர்கண்ட டோரசில் முழு அகராதி பிரதிபலிக்கப்பட்டதால், இதனைக்க்கொண்டு ஒரு சொற்பிழை திருத்தி செய்யலாம். பிழையான் சொல்லின் திருத்தம், அதன் நெருங்கிய தொலைவில் உள்ள சரியான் சொல் என்பதை நடைமுரைவிதியாகக்கொண்டு இதனை அமல்படுத்தலாம்.

Theorem 6: Tries எனப்படும் சொல்மரங்களைக்கொண்ட தரவமைப்பை டோரசில் குறியிட்டால், அது தொடர்பாதையாக ஒரே தொடக்கமும், பல பாதைமுடிவுகளையும் கொண்டதாக அமையும். இவற்றில் சில பாதைகள் சேரும் வகையில் முடிவுபெரும் வகையிலும் அமையலாம்.

படம் 2: Trie மரம் என்ற தரவமைப்பு. இதில் ‘to’, ‘tea’, ‘ted’, ‘ten’, ‘A’, ‘in’, மற்றும் ‘inn’ ஆகிய சொற்கள் இடம் பெற்றுள்ளன.

உதாரணத்திற்கு, படம் 2-இல் முடியும் நிலை நுனிகள் ‘n’ என்பவை டோரசில் வரும்பொழுது சேரும் வகையில் முடிவுபெரும் வகையில் அமையும்.

-முத்து.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google+ photo

You are commenting using your Google+ account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s

This site uses Akismet to reduce spam. Learn how your comment data is processed.