செயற்கையறிவு – அறம்

Montreal-Declaration-for-AI

எதர்க்காக செயற்கையறிவு எந்திரங்கள் ? நாம் செய்யும் தற்சமையம் அபாயகரமான தொழில்களிலும், நிபுனர்கள் குறைவாக உள்ள தொழிகளிலும் அதன்கண் விலைவாசிகளை குறைக்கும் வண்ணம் பலருக்கும் அத்தகைய சேவைகளை அளிப்பதிலும், தினசரி வாழ்வில் உள்ள சிறு சிறு விடயங்களை மேம்படுத்தவும் இவைகள் உதவுவது நாம் குறிக்கோள்களானாலும், இவை மற்றும்தானா செயற்கையறிவின் இலக்குகள்/பயன்கள்?

இல்லை. தீய பயன்களுக்கும் செயற்கையறிவு சிலரால் பயன்படுத்தலாம்உதாரணம்:

  1. Black Mirror என்ற தொலைகாட்சித்தொடரில் “Metal Head” என்ற கதையில் இரத்த வெறிபிடித்த செயற்கை ஓனாய்கள் பற்றியும்,
  2. Silicon Valley HBO தொடரில் “Eklow” என்ற கதையில் “Fiona” என்ற எந்திர பெண் பாலியல் முறைகேடிக்கு உட்படுத்தப்படுவதும்,
  3. தமிழில் எந்திரன்-1 இல் காதல் மோகம் கொண்ட (சிவப்பு சில்லு புரோகிராமிங் கொண்ட) “சிட்டி

பற்றியும் படித்தால் நாளைய ரோபோக்கள் எந்தவித வேலைகளில் ஈடுபடலாம் என்றும் அவற்றில் சில மனித அறம் மீரியவை என்றும் புலப்படுகின்றது.

ரோபோக்களின் திறன்களை செயற்கையறிவின் அறம் கொண்டு நிர்ணயிக்கும் தருணத்தில் இன்று நாம்இருக்கின்றோம். இந்த நிலை வெகு ஆண்டுகள் நீடிக்கும் என்பது சந்தேகத்திற்குறியதாக இருக்கின்றது. முதன் முதலின் இவற்றினை பற்றி பிறபலமாக அலசல் செய்தும் ரோபோக்களில் மீர கூடாத/முடியாத மூன்று கோட்பாடுகள் அளித்தவர் அசிமோவ்.

மேலும், இந்த சூழலில் கனடிய மொண்ரியால் பல்கலைக்கழகம் நடத்திய கருத்தரங்கின் வழிவந்த ஒரு செயற்கையறிவு நடுவன் மற்றும் மூல கட்டமைப்பு கோட்பாடு உலகத்தரம் வாயந்ததாகவும், பொதுவான குடியரசு, ஜனநாயக, சமத்துவ, மனித உரிமை, கோட்பாடுகளின் மீதும் தழுவிய அறக்கோட்பாடுகளென காண்கின்றேன். இதன் முழு உரை இங்கே: https://www.montrealdeclaration-responsibleai.com/the-declaration – இந்த ஆவணத்தை சிறந்த வழக்கறிஞர்களும், தொழில்நுட்பவியலாளர்களும் சேர்ந்து தமிழிலும் ஒரு நாள் மொழிபெயர்ப்பார்கள் என்று எண்ணலாம்.

மேலும் ஐக்கிய அமெரிக்க அரசும் இதனைப்போல் ஒரு பொது நல செயற்கையறிவின் பயன்பாட்டினை அமெரிக்க நாட்டின் நலத்திற்காகவும், உலக மக்களின் நலன், முன்னேற்றத்திற்காகவும் இங்கு அளித்திருக்கின்றது. https://www.bloomberg.com/opinion/articles/2020-01-07/ai-that-reflects-american-values

எனது பொறியாளர் நம்பிக்கை என்னமோ இயந்திரங்களை நாம் பிரம்மனைப்போல் படைத்தாலும் அவற்றின் மரபணுவில் நமது தலை சிறந்த மனிதவியல் கோட்பாடுகளை மட்டுமே சேர்க்கவேண்டும்.

-முத்து.

செயற்கையறிவு – சில சுட்டிகள்

மெரிட் ஏரி, ஓக்லாண்டு, கலிபோர்னியா.

இனிய புத்தாண்டு வாழ்த்துக்கள் 2020. செயற்கையறிவு – சில கட்டமைப்பு பயிற்சி சுட்டிகளை இந்த பதிவில் நான் பகிர்கின்றேன். எனது குறிக்கோள் என்னவென்றால் – இதனை படிக்கும் நீங்கள் பைத்தான், numpy, tensorflow என்ற நுட்பங்களையும் கட்டமைப்புகளையும் கையாண்டு செயற்கையறிவு திறண்களை ஒரு ஆண்டில் அல்லது குறைவான காலத்தில் நீங்கள் பெறலாம் என்பதாவது. இவை அனைத்தையும் கற்றிட ஒரு கூகில் கணக்கு மட்டும் இருந்தால் போதும் – அவர்களது colaboratory = code + laboratory என்ற இணைய சேவை மிக உதவிகரமானது – இங்கு பார்க்கவும்.

  1. முதலில் உங்களுக்கு பைத்தான் மற்றும் numpy, அணிகளின் கணிதம் (linear algebra – எனுக்கு மிகவும் பிடித்தவர் பேராசிரியர். கில்பட் ஸ்டிராங்.) ஒருபடியாக தேர்ச்சியடைந்திருந்தால் நல்லது. இல்லாட்டி வருத்தப்படாமல் கூகில் செய்யுங்க; StackOverflow செய்யுங்கள்.
  2. ஸ்டான்போர்டு பல்களை செய்ற்கையறிவு பாடம், மற்றும் tensorflow நிரல் மாதிரிகள். இதனை இயற்றியவர் சிப்னுயன் என்பவள். இதன்வழி நீங்கள் tensorflow கற்றிடலாம். இவற்றின் மூலம் சில ஆண்டுகளாக நானும் படித்து வருகிறேன்.
  3. மேலும் படி 2-இல் சிக்கல் நேர்ந்தால் அல்லது உங்களுக்கு அதிக அளவு விவரங்கள் தேவைகள் இல்லாவிட்டால் Keras என்ற கட்டமைப்பையும் பயன்படுத்திடலாம். இவை இரண்டும் இல்லாத மற்ற கட்டமைப்புகளான PyTorch மற்றும் Caffe, CNTK என்றும் உள்ளன – இவற்றை பற்றி சொல்வதற்கு எனக்கு தேர்ச்சி இல்லை;
    1. உங்களுக்கு படிப்பதற்கு இவற்றில் ஏதோ ஓன்றினை மற்றும் படித்தால் போதுமானது; அதாவது இவற்றினிடையே வித்தியாசங்கள் எல்லாம் குளிர்பானங்களினிடையே உள்ள வித்தியாசங்களினை மட்டும்தான் என்ற்படி உணரவேண்டும்; நீங்கள் இந்த பலவிதமான செயற்கையறிவு கட்டமைப்புகளினிடையே காணமுடியும் என்றும் சொல்லாம்.
  4. தமிழில் ஒரு முதல் முறையாக சென்ற ஆண்டு வெளிவந்த நூல் “எளிய தமிழில் Machine Learning,” கணியம் திருமதி. து. நித்தியா. இதனை கிண்டில் மின்கருவி/செயலி அல்லது PDF-இலும் இங்கு படிக்கலாம்.
  5. எது செய்தாலும் நீங்கள் பயிற்சி நோக்கில் செய்பட எனது வலியுருத்தல். ஏட்டு சுறைக்காய் கறிக்கு என்றும் உதவாது என்றும் நாம் அறிவோம். மேலும் பயிற்சி செய்து சான்றுகள் பெற இணைய வழி பல்கழைக்கழாக்ங்களும் உதவுகின்றன – Coursera, Udacity போன்றவை.

இந்த செயற்கையறிவு நிரல்களை கொண்டு சில 5 ஆண்டுகளுக்கும் முன்பு எவராலும் இயல்முடியாத செயல்களை இந்த செயற்கை நரம்பு பின்னல்கள் (Deep Neural Networks) என்பவை சாத்தியப்படுத்துகின்றன. இந்தியாவில் இதை எழுதும் சமயம் 50% மேலான மக்கள் 30 வதிற்கும் குறைந்தவர்கள் – இந்த வழி திறண்களைக்கொண்டு புதிய சேவைகளையும் பலதுரைகளின் உருவாக்கியும் வழங்கியும் வாழ்வினை செம்மைப்படுத்தலாம்.

உதாரணம்:

  1. தானியங்கி கார்கள்/வாகனங்கள் செயல்படுத்துதல்: Tesla, Waymo, Cruise போன்ற பல நிறுவனங்கள் இவற்றினை செயல்படுத்துகின்றனர்.
  2. கணினி காட்சி அறிவியல்/உணர்தல்: ImageNet என்ற பல மில்லியன் படங்கள் கொண்ட தறவில் இருந்து பயிற்சி செய்யப்பட்ட செயற்கை நரம்பு பின்னல் 1000-வகையான பொருட்களை மனிதர் திறன் காட்டிலும் துல்லியமாகக் கண்டறிய உதவும். இவற்றைக்கொண்டு என்ன செய்யலாம் – யோசியுங்கள் ?
  3. மொழியில் சேவைகளும் NLP கணினியில் செம்மைபடுத்த இவைகள் உதவும்;
    1. மொழி உரை, ஒலி உணர்தல். (Comprehension)
    2. மொழி உரை->ஒலி மாற்றி (TTS)
    3. மொழி ஒலி -> உரை மாற்றி (ASR)

மேலும் பல. நீங்கள் முயற்சி செய்வீர்களா?

-முத்து.