காதல் -> தவம் – பாகம் 2

விடை: சொல் ஏணி (word-ladder games ) என்பன காதல்-இல் இருந்து தவம் வரை மாற்ற உதவும் – இதை காண்க.

  1. அதாவது, ஒரு அகராதியை கொண்டு, முனை-ஓரம் படம் அமைக்கவும்.
  2. இரு சொற்கள் ஓரத்தால் இணைக்கப்பட்டால், அவை ஒன்ருடன் ஒன்று ஒரு எழுத்து மாற்றம் வழி தொடர்புடையது என்று அர்த்தம்.

இதை கொண்டு ஏற்கனவே ‘காதல் -> தவம்‘ எழுதினோம்.

மேலும் இந்த ஆய்வுக்கட்டுரை அழகாக உள்ளளது – (கட்டுரை) ‘Word Morph and Topological Structures: A Graph Generating Algorithm’, Jürgen Klüver, Jörn Schmidt, Christina Klüver, (2016), Complexity, Vol. 21, No. S1. Wiley Publications.

 

Chennai Python 24th, March, 2018

24th March, 2018,  Chennai Python Meet-up

Open-Tamil and Ezhil-Language Projects

“எழில் என்பது முதல் திர மூலமாக கிடைக்கக்கூடிய தமிழ் ஸ்கிரிப்டை அடிப்படையாகக்
கொண்ட நிரலாக்க மொழி ஆகும், இது விண்டோஸ் 32, 64 மற்றும் Ubuntu, Fedora Linux மற்றும் Docker தளங்களில் 2017 ஆம் ஆண்டில் வெளியான http://ezhillang.org. எழில் ஒரு பைத்தான்-அடிப்படையிலான மொழிஇயக்கி. வளர்ச்சி GitHub வழியாக நடைபெறுகிறது.

திறந்த-தமிழ் தமிழ் நெருக்கமாக தொடர்புடைய தமிழ் மொழி செயலாக்க கருவிகள் கொன்டது; நூலகம் ஆரம்பத்தில் எழில் மொழியின் ஒரு கீற்றாக துவங்கியது; ஆனால் விரைவாக வார்த்தை-வடிகட்டுதல், N- கிராம் பகுப்பாய்வு, புணற்சசி இலக்கணம், தமிழ் எழுத்துப்பிழை சொல்திருத்தி உருவாக்கம் முதலியன, பல மொழிகளில் பைத்தான், முக்கியமாக, ஜாவா, ரூபி முதலியவற்றிற்கான தமிழ் தொகுப்புகள் பரிசுரம் செய்யபட்டன். http://tamilpesu.us வலையில், மற்றும் Play Store இல் Kalsee பயன்பாட்டில் எங்கள் வேலைகளை பயன்படுத்தலாம்.”

600_469542627

 

Thanks to kind arrangements of friends in Chennai Python, and open-tamil community I had an opportunity to make a presentation on Open-Tamil and Ezhil-Lang projects, and completion. Talk was well received, and delivered in unique Tamil mixed with English due to comfort of being in Chennai only!

open-tamil on web

Today, you are welcome to play with open-tamil API via web at http://tamilpesu.us

DXrBTyUX0AEm7ET.jpg-large

Generating multiplication tables via Open-Tamil APIs’: http://tamilpesu.us/vaypaadu/

This is collective work of our team underlying the website (written in Django+Python) highlighting various aspects of open-tamil like transliteration, numeral generation, encoding converters, spell checker among other things. At this time I hope to keep the website running through most of this year, and add features as git-repo https://github.com/Ezhil-Language-Foundation/open-tamil gets updated.

Thanks to Mr. Syed Abuthahir, many months ago, in winter of 2017, he has developed an interface for open-tamil on the web and shared with us under GNU Affero GPL terms. Later, we is added as part of main open-tamil as well.

Open-Tamil moves forward; come join us!

-Muthu

Tamil Internet Conference 2018 – Coimbatore, India

Tamil internet Conference 2018 to take place at TNAU, Coimbatore, India later this year. Please see call for papers (March 30th deadline) to share your new and upcoming works in Tamil, linguistics and applied computer technology.

Please see the email from Prof. Kalyanasundaram, chair of Tamil Internet Conference – 2018.
DXgFYf8U0AATWuQ.jpg-large

Email from Prof. Kalyan announcing call for papers for Tamil Internet Conference 2018, at TNAU Coimbatore, India.

Classifying Tamil words – part 1

Problem

One of problems faced when building a Tamil spell checker, albeit somewhat marginal, can be phrased as follows:

Given a series of Tamil alphabets, how do you decide if the letters are true Tamil word (even out of dictionary) or if it is a transliterated English word ?

e.g. Between the words, ‘உகந்த’ vs ‘கம்புயுடர்’ can you decide which is true Tamil word and which is transliterated ?

Tools

This is somewhat simple with help of a neural network; given sufficient “features” and “training data” we can train some of these neural networks easily. With current interest in this area, tools are available to make this task quite easy – any of Pandas, Keras, PyTorch and Tensorflow may suffice.

Generally, the only thing you need to know about Artificial Intelligence (AI) is that machines can be trained to do tasks based on two distinctive learning processes:

  1. Regression,
  2. Classification

Read more at the Wikipedia – the current “problem” is a classification task.

Features

Naturally for task of classifying a word, we may take features as following:

  1. Word length
  2. Are all characters unique ?
  3. Number of repeated characters ?
  4. Vowels count, Consonant count
    1. In Tamil this information is stored as (Kuril, Nedil, Ayudham) and (Vallinam, Mellinam and Idayinam)
  5. Is word palindrome ?
  6. We can add bigram data as features as next step

Basically this task can be achieved with new code checked into Open-Tamil 0.7 (dev version) called ‘tamil.utf8.classify_letter

Screen Shot 2017-12-17 at 1.03.03 PM.png

Data sets

To make data sets we can use Tamil VU dictionary as a list of valid Tamil words (label 1); next we can use a transliterated list of words from English into Tamil as list of invalid Tamil words (label 0).

Using a 1, 0 labeled data, we may use part of this combined data for training the neural network with gradient descent algorithm or any other method for building a supervised learning model.

Building Transliterated Data

Using the Python code below and the data file from open-tamil repository you can build the code and run it,

def jaffna_transliterate(eng_string):
  tamil_tx = algorithm.Iterative.transliterate(jaffna.Transliteration.table,eng_string)
  return tamil_tx

def azhagi_transliterate(eng_string):
  tamil_tx = algorithm.Iterative.transliterate(azhagi.Transliteration.table,eng_string)
  return tamil_tx

def combinational_transliterate(eng_string):
  tamil_tx = algorithm.Iterative.transliterate(combinational.Transliteration.table,eng_string)
  return tamil_tx

# 3 forms of Tamil transliteration for English word
jfile = codecs.open('english_dictionary_words.jaffna','w','utf-8')
cfile = codecs.open('english_dictionary_words.combinational','w','utf-8')
afile = codecs.open('english_dictionary_words.azhagi','w','utf-8')
with codecs.open('english_dictionary_words.txt','r') as engf:
for idx,w in enumerate(engf.readlines()):
  w = w.strip()
  if len(w) < 1:
    continue
  print(idx)
  jfile.write(u"%s\n"%jaffna_transliterate(w))
  cfile.write(u"%s\n"%combinational_transliterate(w))
  afile.write(u"%s\n"%azhagi_transliterate(w))
  jfile.close()
  cfile.close()
  afile.close()

to get the following data files (left pane shows ‘Jaffna’ transliteration standard, while the right pane shows the source English word list); full gist on GitHub at this link

Screen Shot 2017-12-17 at 1.47.42 PM.png

In the next blog post I will share the details of training the neural network and building this classifier. Stay tuned!

 

திருத்த திருத்த … பிழைகள் ஒழிந்திட – spellchecker

இந்த பதிவில் ஏற்கனவே எழுதிய மயங்கொலி எழுத்துகள் பற்றிய பதிவில் (எப்படி மயங்கொலி பிழைகளை திருத்தம் செய்யலாம் என்பது பற்றி)  சிந்தனைகளை வழிமுறைபடுத்தி இங்கு பதிவு செய்கிறேன்.

இந்த பதிவில் எப்படி மயங்கொலி பிழைகளை சொல்திருத்தியில் நடைமுறைப்படுத்தி open-tamil-இல் செயல்படுத்துவது என்றும், இதன் நல்ல விளைவுகளையும் பார்க்கலாம்.

திருத்தம்

 

“தமிழ் திருத்தி” என்ற பெயரில் இந்த (web-based) வலை வழி இடைமுகம் காணலாம் [படம் 1].

தமிழ் திருத்தியில் “பளம்” என்றும் மற்ற இரண்டு சொற்களை (“காதள்”, “எலிதில்”) உள்ளீடு செய்து, சறிபார்க்க சொல்லலாம்.

விடைகளும் மாற்றங்களும் இங்கே! தவறான சொற்கள் சிகப்பு நிர கோட்டில் சுட்டி காட்டப்படும். இதனை விரைவில் open-tamil-இல் காணலாம்.

spell-checker-mayangoli-cases

படம்: எழுத்தாளர் சொற்களை செதுக்குகிறாள்; ஆனால் அவளுக்கு சில சொற்பிழை வந்துள்ளது. இவற்றை எப்படி அவள் நிவர்த்தி செய்தாள் ?

 

spell-checker-mayangoli-replace-1

படம் 2: முதல் சொல் மாற்றம் பழம், கனி

spell-checker-mayangoli-replace-2

படம் 3: இரண்டாம் சொல் “காதல்”

spell-checker-mayangoli-replace-3

படம் 4: மூன்றாம் சொல் “எளிதில்”

மாலை பொழுதின் மயக்கமென்ன

img_2450-e1509836851566.jpg

படம்: ஜூலை மலர், ஆண்டிற்கு ஒருமுறை மலரும். உபாயம், எனது தந்தை, வேளாண் வல்லுநர், திரு. அண்ணாமலை.

“தமிழ் தெரியுமா?” என்று நிறையபேர் ஒருவரை கேட்பது, இணையத்தின் தூரத்தில்,  பழக்கமான நாம் பார்க்கும் ஒரு விஷயம். காரணம் அடிக்கடி சிலரது சொற்களில் தலையெடுக்கும் சொற்பிழை. இவற்றை தவிர்க்க அவர்களுக்கு தேவை, பிழைகளை தடுக்கும்/திருத்தும் சொல்திருத்தி – spell checker – மூலம் ஒரு கட்டுரையை சோதித்தால். பல ஆண்டுகள் தமிழ் பயின்ற பொலிவு லேசுலே நமக்கும் கிடைக்கும். இந்த கட்டுரையும் அப்படி ஒரு (வளர்ச்சி நிலையில் உள்ள சொற்பிழை திருத்தியின் வாயில் சோதிக்கப்பட்டே பரிசுரம் செய்யப்பட்டது).

மாலை பொழுதில் மயக்கமென்ன ? தமிழில் உள்ள மயங்கொலி எழுத்துகள்  நான்கு வரிசையில் அமைக்கலாம்,

  • , , வரிசை.
  • , வரிசை.
  • , , வரிசை.
  • , , வரிசை.

சொல்திருத்தியில் கணினி நிரல் செய்யவேண்டியது இதுவே:

  1. உள்ளீடு கொடுக்கபட்ட சொல் சரியானதா, அல்லது தவறானதா ?
  2. தவறான சொல் என்ற பட்சத்தில் அதன் மாற்றங்கள் என்னென்ன ?

முதல் படியை எளிதாக ஒரு கையகராதியை கொண்டு செயல்படுத்தலாம். இதனை ஓபன்-தமிழ் (open-tamil) solthiruthi தொகுப்பில் Tamil VU மின் அகராதியை கொண்டு செயல்படுத்தியுள்ளோம். சரியான சொற்கள், அதாவது வேர் எடுத்த, புணர்ச்சி மற்றும் சாந்தி பிரிக்கப்பட்ட சொற்கள் அனைத்தும்  சராசரி மின்அகராதியில் காணலாம். இதுவே எளிதான படி.

இரண்டாவது படிதான் ஒரு சொல்திருத்தியின் சிறப்பிற்கும், தரத்திற்கும்,  முக்கியமானது; இந்த பதிவில் எப்படி மயங்கொலி எழுத்து பிழைகளை திருத்தலாம் என்று சில எண்ணங்களை சமர்ப்பிக்கிறேன்.

உதாரணம் உரையின் சொல் “பளம்” என்பது பிழை என்று கண்டறியப்பட்டது. இது பள்ளம், அல்லது பழம் என்று இரு மாற்றங்களை எழுத்தாளர் நினைத்தாலும் இதனை பிழையாக உள்ளீடு செய்துள்ளார். இங்கு ள-ல-ழ மயக்கம் காணப்படுகிறது.

இதனை கணினி “பலம்”, “பழம்” என்றும் மாற்றுகளை உருவாக்கி இதில் அகராதியில் உள்ளவற்றை மட்டுமே வடிகட்டி எழுத்தாளருக்கு பரிந்துரை செய்யவேண்டும்.

இதனை கொண்டு அணைத்து மயங்கொலி பிழைகளை திருத்தும் ஒரு தன்மை கொண்ட சொல்திருத்தியை உருவாக்கலாம். உதாரணம்,

வளர்ச்சி நிலையில் உள்ள, தற்போது மென்பொருள் வடிவமைப்பில் உள்ள சொல்திருத்தி ஓபன்-தமிழ் தொகுப்பில் காணலாம்: [எச்சரிக்கை: இது இன்னும் பொது பயன்பாட்டிற்கு பொருத்தமானதல்ல]

muthu@brightone:~/devel/open-tamil$ ./spell.sh -i
>> பளம்
சொல் “பளம்” மாற்றங்கள்
(0) பம், (1) பளகு, (2) உளம், (3) பள், (4) அளம்
, (5) ஆளம், (6) பழம்
வணக்கம்!

-முத்து அண்ணாமலை

கலிஃபோர்னியா, அமெரிக்கா.